Los resultados del estudio están publicados en la revista Materials Science and Engineering A.
El aluminio y sus aleaciones ocupan el segundo lugar en términos de aplicaciones solo por detrás de las aleaciones de hierro. El aluminio se procesa fácilmente mediante forjado, estampado, laminado y se caracteriza por su baja densidad, resultando ligeros los artículos fabricados con este material.
La tecnología de fabricación de piezas de paredes delgadas con perfil complejo, que es tradicional para la ingeniería mecánica, se basa en técnicas de estampado de láminas que se caracteriza por una baja tasa de utilización de metales y una gran cantidad de piezas componentes y elementos de sujeción —piezas compuestas obtenidas por estampado que se componen de partes que deben unirse por remachado o soldadura—.
Estas deficiencias se eliminan mediante el uso de conformado superplástico de lámina (SPF): se obtienen estructuras ligeras de una sola pieza y con geometría compleja.
Los investigadores de la NUST MISIS se plantearon el objetivo de desarrollar aleaciones de aluminio con una mayor resistencia a temperatura ambiente y facilidad para el conformado superplástico a velocidades elevadas.
"Fundimos los componentes necesarios en el horno a una temperatura de aproximadamente 800 grados centígrados y rellenamos un molde especial. Después, recocemos los lingotes y los laminamos", explica la responsable del estudio Anastasía Mijáilovskaya, docente de la NUST MISIS.
"En cada etapa, es importante controlar su microestructura, cuyos parámetros determinan la estructura de la lámina final después de las operaciones intermedias. Para ello, utilizamos microscopios con un aumento de hasta 20.000 veces. A continuación analizamos las propiedades de las muestras de las aleaciones, su resistencia y ductilidad a temperaturas ambiente y elevada (400 a 500 grados centígrados) estirando la muestra para que se rompa", asegura Mijáilovskaya.
Hoy en día existen varias aleaciones superplásticas para el SPF, la mayoría de las cuales tienen velocidades de deformación muy bajas y un alargamiento relativo de aproximadamente el 300%, dice la coautora del estudio Anna Kíschik, estudiante de doctorado de la NUST MISIS.
Antes de introducir la aleación en la producción, los científicos prevén llevar a cabo pruebas en condiciones de fabricación de láminas. En el futuro inmediato, los investigadores realizarán gestiones para obtener una patente internacional.