Los científicos de la Universidad Nacional de Ciencia y Tecnología de Rusia MISIS (NUST MISIS), la Universidad de Karlsruhe (Alemania) y el Instituto de Tecnologías Fotónicas de Jena (Alemania), bajo la dirección del jefe del laboratorio de metamateriales ultraconductores de la NUST MISIS, el catedrático Alexéi Ustínov, desarrollaron por primera vez en la historia los llamados cúbits de espejo y metamateriales a partir de los mismos. Este el primer metamaterial cuántico que podrá usarse como elemento de gestión en los esquemas eléctricos superconductores. Los resultados del trabajo fueron publicados en la revista Nature Communications.
Hasta hace poco una de las principales diferencias entre los átomos y los meta-átomos consistía en que las propiedades de los átomos se describían con ecuaciones de mecánica cuántica, mientras que las de los meta-átomos se desglosaban con ecuaciones físicas clásicas.
La creación de los cúbits —unidades mínimas de información que pueden ser almacenadas en un ordenador cuántico— brindó la posibilidad de desarrollar un material compuesto por los meta-átomos cuyo estado se describe solo de forma mecánico-cuántica. Aunque este trabajo requirió diseñar unos cúbits específicos.
Durante el experimento resultó que cualquier metamaterial compuesto por cúbits de espejo puede alternarse de dos modos. En uno de ellos la cadena de estos cúbits conduce muy bien la radiación electromagnética en un rango microondas, sin dejar de ser un elemento cuántico. En el otro, la fase superconductora gira 180 grados y bloquea el paso de las ondas electromagnéticas a través de ella misma. Lo importante es que sigue siendo el sistema cuántico.
"Resulta que con la ayuda de un campo magnético este material podría usarse como un elemento de gestión en los sistemas de transmisión de señales cuánticas —fotones aislados— en las cadenas de las cuales están formados los ordenadores cuánticos actuales", explica el ingeniero del laboratorio de metamateriales superconductores de la NUST MISIS, Iliá Besedin. "Es uno de los elementos clave en los dispositivos electrónicos superconductores".
Los autores del estudio tuvieron que barajar numerosas teorías para describir de forma correcta los procesos que se dan en el metamaterial cuántico. El resultado de sus investigaciones fue recogido en el artículo 'Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits', publicado en la revista Nature Communications.
Lea también: MISIS, una de las universidades rusas "más notables en el escenario académico mundial"